Blog Post

Can Physical Therapists Treat Temporomandibular Joint Dysfunction?

7015647171 • June 3, 2019

Of course! The TMJ is not unlike any other joint in the body, it contains a joint capsule, ligaments, and periarticular musculature. If it is not unlike any other joint, then why is it so intimidating to treat and why do such a small percentage of patients with jaw pain seek care?

Many Physical Therapists are intimidated to treat the TMJ due to the increased working knowledge of anatomy and biomechanics required to treat patients in this niche population, as well as the regional interdependence with the cervical and thoracic spine.

Chronic TMD

Chronic TMJ pain is cited to be the third most prevalent chronic pain condition worldwide, after tension headaches and low back pain. However, it is very underrepresented in physical therapy clinics, which I believe is in part due to the general population being unaware of how much a Physical Therapist can help with their condition.

Another variable that is associated with the chronicity of TMJ pain, is central sensitization. Central sensitization is defined as increased responsiveness of nociceptive neurons in the central nervous system to their normal or subthreshold afferent input. In other words, with chronic pain your brain may become sensitive to input and perceive this as pain during stimulation that was previously painless. Physical therapists are trained to decrease this sensitization with modalities and exercise, which will be discussed later

So what can a Physical Therapist do for Temporomandibular Joint Dysfunction (TMD)?

First, we must look at the anatomy of the joint:

In the highlighted square, you will see the TMJ, with the bony components comprised of the condyle and the articular eminence. In between these bones you will see the articular disc, which serves to increase the congruency of the joint, similar to the menisci in the knee. However, the disc must move to maximize the available opening range of motion. In the pictures below, note how the disc moves forward when opening the mouth, and how the condyle remains under the disc.

Generally speaking, the initial goal of Physical Therapy (PT) will be to restore the normal biomechanics of the TMJ illustrated above, and identify which structures are preventing this from happening. The most common culprit of TMJ pathology, is the lateral pterygoid, which is the muscle pictured on the right side that attaches to the disc. If this muscle is tight or in spasm, it will pull the disc forward, which can lead to increased pain due the disc being pinched with opening and the lack of congruency of the joint in a resting position.

This is where the expertise of a skilled physical therapist is required. If a patient has tight quads or upper traps, it is relatively simple to perform soft tissue mobilization, stretching, or other modalities to address this tightness. However, it is less obvious how to address lateral pterygoid irritation.

While the lateral pterygoids play a large role in TMD, you will see below that there are several other muscles that assist in causing motion at the TMJ:

The temporalis and the masseter are much easier to locate, and you will be able to feel them contracting when clenching your jaw.

What does the research say about interventions to address TMD?

Soft tissue release/mobilization: Manual soft tissue techniques targeting the temporalis and masseter have been shown to effectively decrease pain (Gauer and Semidey, 2015). However, the ability to palpate and perform soft tissue mobilization to the lateral/medial pterygoids is much less reliable (Stelzenmueller et al 2016).

Bottom line: Manual soft tissue techniques have a positive effect on accessible muscles such as the temporalis and masseter, thereby improving symptoms associated with TMD, but they are unlikely to reach the pterygoid muscles that are not only more intimately related to the joint itself, but also more likely one of the primarily etiologic factors in TMD (Dunning et al 2017)

Dry Needling (DN): Due to difficulty palpating and mobilizing the pterygoids, increased focus has been placed on DN to address muscular irritation. As previously mentioned, the pterygoids are more likely to contribute to TMD, which increases the importance of addressing them with skilled physical therapy. Mesa-Jimez et al. performed DN 3x/week to the lateral pterygoids, and reported statistically significant within group improvement in pain and jaw range of motion, which was maintained at follow up 6 months after the intervention. A more recent study by Gonzalez-Perez et al. reported significant between group reductions in pain when comparing lateral pterygoid dry needling to methocarbamol (muscle relaxer).

Joint Mobilization: For any joint to achieve full range of motion, you also need appropriate movement of the bones on each other (arthrokinematics). While arthrokinematics are beyond the scope of this blog, understand that the condyle must first roll under the disc, and will then need to slide forward with the disc towards the articular eminence.

To determine if the TMJ is having difficulty rolling or sliding, your Physical Therapist will want to observe full opening, and will determine if the mouth opens straight down, or deviates to a certain side. If this is the case, joint mobilizations may be performed by a Physical Therapist to restore normal arthrokinematics. Martins et al. notes a general consensus in the literature that supports joint mobilization for improving pain and range of motion patients with TMD. They also reported a large effect and a significant difference in active mouth opening and pain reduction of manual therapy compared to other active interventions such as home exercise, massage, and splint therapy.

So now that I am out of pain, how do I prevent this from happening again?

As mentioned earlier, the initial phase of Physical Therapy is to decrease pain and restore motion for the TMJ, but how do we make sure this pain does not return? The mainstay of avoiding return of TMD is addressing postural deficits. If you are reading this, I want you to sit up nice and tall and open your mouth as wide as you can, now close and repeat opening while in a slumped forward posture. When slumped forward, the TMJ experiences increased stress on the capsule, as well as increased muscular demand to maintain the joint in appropriate position.

How can a Physical Therapist fix my posture?

Postural deficits are multifactorial in nature with some of the most common deficits being:

- Prolonged sitting

- Weak scapular stabilizers

- Weak cervical flexors

- Joint restrictions in thoracic or cervical spine

Regional interdependence:

Addressing the above deficits is essential to avoiding future TMJ issues, and should be started from day 1 in Physical Therapy. Looking at the picture above for reference, you can imagine that if the cervical/thoracic spine is not moving as much as it should, it will be difficult to maintain your head in the optimal position for the TMJ. This is why your Physical Therapist may recommend cervical and thoracic spinal manipulations, which is evidenced by numerous studies in a systematic review by Armijo-Olive et al. to have a statistically significant impact on TMD.

When this new range of motion is attained and the TMJ is in a good resting position, it is imperative to prescribe therapeutic exercises to maintain this position. Some examples of these exercises are chin tucks, mid trap rows, and cervical isometrics.

Cervicogenic headaches are also common to see with people suffering from chronic TMD. Cervicogenic headaches are defined as a chronic headache that arises from the upper cervical joints and/or musculature. They are believed to occur at the converging of the trigeminal and cervical afferents at the trigeminocervical nucleus within the upper cervical spinal cord. In other words, this converging of sensory fibers allows for the referral of pain signals from the upper cervical spine to areas of the face and head. This can be addressed by the use of upper cervical spine manipulation, as well as dry needling. For more information on cervicogenic headaches, see previous blog post written in November 2018.

Conclusion:

TMJ pathologies are multifactorial in nature, and are closely intertwined with adjacent areas. A Physical Therapy plan of care is not complete unless it addresses all of these factors, at the risk of symptoms returning. The Therapists at Evolution Sports Physiotherapy understand the complexity of the TMJ and how to treat it thoroughly..

Sources:

1. Butts, R. Dunning, J. Pavkovich, R. Metille, J. Mourad, F. Conservative management of temporomandibular dysfunction: A literature review with implications for clinical practice guidelines (Narrative review part 2). Journal of Bodywork & Movement Therapies 2017

2.Gauer, R.L., Semidey, M.J. Diagnosis and treatment of temporomandibular disorders. Am. Fam. Physician . 2015;91:378–386

3.Stelzenmueller, W., Umstadt, H., Weber, D., Goenner-Oezkan, V., Kopp, S., Lisson, J. Evidence - the intraoral palpability of the lateral pterygoid muscle - a prospective study. Ann. Anat. 2016;206:89–95

4.Dunning, J., Butts, R., Mourad, F., Young, I., Flannagan, S., Perreault, T. Dry needling: a literature review with implications for clinical practice guidelines. Phys. Ther. Rev. 2014;19:252–265

5.Dunning, J.R., Cleland, J.A., Waldrop, M.A., Arnot, C.F., Young, I.A., Turner, M., Sigurdsson, G. Upper cervical and upper thoracic thrust manipulation versus nonthrust mobilization in patients with mechanical neck pain: a multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2012;42:5–18

6.Gonzalez-Perez, L.M., Infante-Cossio, P., Granados-Nunez, M., Urresti-Lopez, F.J., Lopez-Martos, R., Ruiz-Canela-Mendez, P. Deep dry needling of trigger points located in the lateral pterygoid muscle: efficacy and safety of treatment for management of myofascial pain and temporomandibular dysfunction. Med. Oral Patol. Oral Cir. Bucal . 2015;20:e326–333

7.Armijo-Olivo, S., Pitance, L., Singh, V., Neto, F., Thie, N., Michelotti, A. Effectiveness of manual therapy and therapeutic exercise for temporomandibular disorders: systematic review and meta-analysis. Phys. Ther. 2016;96:9–25

By Kenneth Butler SPT and Dr. Christopher Mooney DPT May 11, 2021
Running is one of the most common and popular methods of fitness in the world, with many cities and communities taking part in establishment of running events from 5k to marathon level and above, to smaller running cohorts, and for social events. However, while running has a high link to overall improved cardiovascular wellbeing, it is also one of the most injury prone athletic populations in world with injury incidence of up to 80%! Fortunately, there are many strategies to help combat and prevent running related injuries for any skill level. TRAIN APPROPRIATELY! As with any other sport, training for the specific demands of running can greatly reduce the risk of injury. The World Health Organization (WHO) recommends a minimum of 150 minutes of moderate-intensity aerobic physical activity or 75 minutes of vigorous-intensity physical activity throughout the week, based on strong evidence of health benefits and reductions upon mortality rates. While many factors influence risk of injury, there are a few significant ones for any running athlete: Type of exercise Find the aerobic exercise that you are passionate about! However, limiting yourself to the same route and same type of run could increase your risk for injury. Cross training with other modes of exercise including strength training or different types of runs could help reduce risk of chronic and acute injury! Exercise frequency and progression Novice runners may benefit from having more days of recovery, especially in the beginning. However, knowing when to progress overall speed, distance, or number of training days can be tricky! Remembering to increase only one variable at a time can help mitigate risk of injury. Exercise intensity and duration Having trouble with determining how intense your run is? Heart rate is an excellent measure of overall cardiovascular output. An easy calculation for determining your Heart Rate maximum is: 220-age As stated prior, recommended minimums for health benefits are 150-300 minutes of moderate intensity, or 75-150 minutes of vigorous intensity per week that typically are broken up into 3-5 days during the week. However, do not let these recommendations deter you from running if you cannot reach them! Calculate using % of Maximum Heart rate, Moderate intensity for aerobic exercise 60-75% of your calculated Heart Rate max; vigorous intensity 75-90% of maximum Heart Rate Equipment Matters! In a recent systematic review of 15 studies there was moderate to strong evidence of higher injury prevalence with persons who had sustained a previous injury, as well as the use of orthotics and the same pair of running shoes for longer than 4-6 months. While there are many different brands and trends within the running shoe and orthotic industry, it is important to note that finding the right pair of shoes for you may take time! Additionally, according to a study on use of multiple shoes during training, results found that there was a 39% decrease in running related injuries over a 22-week period when athletes used at least one more pair of running shoes during the week. Rehab potential 80% of all running injuries are result of overuse or chronic pathology, which may be a result from overtraining or limited tissue adaptations from the amount of load produced on the body during activity. Different types or locations of injury require methods of individualized rehabilitation, and the therapy experts at Evolution Sports Physiotherapy are well versed in the appropriate rehabilitation and progression of any running related injuries. So, whether you are a seasoned runner looking for a full evaluation of running form, or a beginner working towards your first 5K, our approach towards integration of best available evidence within clinical practice and dedication to patient care provides our patients with optimal rehabilitation potential. If you or anyone you know has suffered a running related injury, please contact us via phone at 410-628-0520 or email at chris.mooney@evolutionsportspt.com. We look forward to answering any of your questions and assisting with all of your rehab needs! References 1. Kozlovskaia M, Vlahovich N, Rathbone E, Manzanero S, Keogh J, Hughes DC. A profile of health, lifestyle and training habits of 4720 Australian recreational runners-The case for promoting running for health benefits. Health Promot J Austr. 2019 Apr;30(2):172-179. 2. van der Worp MP, ten Haaf DS, van Cingel R, de Wijer A, Nijhuis-van der Sanden MW, Staal JB. Injuries in runners; a systematic review on risk factors and sex differences. PLoS One. 2015;10(2):e0114937. Published 2015 Feb 23 3. Francis P, Whatman C, Sheerin K, Hume P, Johnson MI. The Proportion of Lower Limb Running Injuries by Gender, Anatomical Location and Specific Pathology: A Systematic Review. J Sports Sci Med. 2019;18(1):21-31. Published 2019 Feb 11 4. Malisoux L, Ramesh J, Mann R, Seil R, Urhausen A, Theisen D. Can parallel use of different running shoes decrease running-related injury risk?. Scand J Med Sci Sports. 2015;25(1):110-115.
Diagnostic Ultrasound
By Brooke Stevens, SPT and Dr. Christopher Mooney August 11, 2020
Musculoskeletal Diagnostic Ultrasound (DU) is a powerful tool that can be utilized by Physical Therapists to identify tendonopathies. Furthermore, DU can be utilized with Dry Needling in order to visualize the needle which has been shown to significanlty improve the accuracy of the user to target the affected area compared to relying solely on palpation and anatomical landmarks.
By Lisa Kanning June 12, 2020
A brief review of the "active" phase in running mechanics
By Lisa Kanning June 4, 2020
The first installment in our running mechanics series discussed the importance of stability and striking your support leg under your hips. This Pose position will allow the runner to absorb forces more readily and prepare more efficiently for the next movement. The next movement in the Pose Method is the Fall. The purpose of this phase is to increase speed and since the Pose Method is all about “effortless running,” optimal body alignment will allow gravity to do the brunt force of the work.
Running technique, Pose Method, Injury Prevention
By Lisa Kanning May 27, 2020
The Pose Method of running allows one to identify and promote a running form that maximizes gravity along with the body’s effort and stored energy (elasticity) to create efficient movement. In essence, it makes running easier and less physically stressful to the body. There is a lot of debate surrounding running form. Some even question if it’s necessary to promote a particular way of running. However, it is a universally accepted foundation that every activity has a “best practice” - from changing a tire to playing basketball to cooking. As able-bodied individuals, we are all physically capable of performing such activities, but how long it will take to complete? How many unnecessary steps do we take? How much additional effort and load do we put on our bodies mentally and physically? These questions can be addressed by learning and PRACTICING ideal mechanics. Sure, you can go out on a 1-mile run in a recommended shoe to begin your fitness journey but would you start your golf journey on the tee box of Hole 1 with your newly purchased clubs? No, likely you would work with a knowledgeable person on how to hold the club, general swing mechanics and practice several range balls before venturing to the course. Why should running be any different? Particularly in a sport where “novice” runners have a much higher risk of running related injuries (RRI) compared to experienced runners. In a study completed in 2018, authors found a 2x-injury rate in novice runners compared to experienced runners over a 4-yr period. Secondly, running is the cornerstone of several other sports so as you go out to shoot 100 free throws every day to practice your form, why wouldn’t you add drills to improve the form of getting from Point A to Point B on the court? It makes sense to make use of the studies on running form and body mechanics to begin a new fitness goal in order to give us an advantage - how many YouTube videos do you watch before endeavoring to fix the washing machine? Knowledge is power. The Pose Method works by identifying repetitive “poses” during a running cycle through which every runner must pass: they have been described as Pose (the typical running “picture”), Pull and Fall. For the next few weeks, we will be breaking down each phase. We will start with “the Pose.”
By Lindsay Wilde, SPT and Chris Mooney, DPT March 26, 2020
Have you been told you need to stretch? Do you know how to stretch? Do you know how long to stretch? Let Evolution Sports guide you through these questions!
By Vivian Chan and Dr. Christopher Mooney March 12, 2020
Medial Hop testing may better measure for safe return to sport participation following and ACL repair.
By Hibu Websites March 5, 2020
In our previous blog post, we highlighted the peripheral mechanisms of dry needling into muscle tissue. The benefits of trigger point dry needling have been well documented in the literature. However, this is only one component of needling in the treatment of neuro-muscular dysfunction. A comprehensive definition of dry needling should include nerves, ligaments, tendons, scar tissue, bone and teno-osseus junctions.1 This requires expanding beyond the trigger point model to consider additional peripheral, spinal and supraspinal mechanisms. The classic local twitch response is thought to be a strong neural impulse triggered from needling into multiple sensitize loci. Mirror local twitch responses have been recorded in the opposite trapezius muscle during dry needling of the symptomatic trapezius. This example suggests a consideration of central mechanisms in addition to local muscle dysfunction.1 A brief review of pain physiology is helpful in consideration of central dry needling mechanisms. Pain sensation originates in peripheral nociceptors that continue into sensory fibers, which feed into the central nervous system through the dorsal horn of the spinal cord.2 After connecting with spinal neurons, the pathway continues up the spinothalamic and spinoreticulothalamic tracts. These lead to supraspinal locations including the thalamus, parabrachial nucleus and amygdala. There is significant potential for both dysfunction and pain relief within this neural system.2 Throughout this discussion, the terms acupuncture and dry needling will be used interchangeably.1 While many studies use the term “dry needling,” others commonly use terms including TrP acupuncture, acupuncture needling and electroacupuncture. Several studies have used acupuncture and dry needling in the same title. All of these cases meet the strict definition of “dry needling”. This trend of discussing dry needling as acupuncture is commonly seen in the UK, Canada, USA and Germany.1 Acupuncture randomized control trials and other studies have commonly used western medical diagnoses including neck pain, knee osteoarthritis and plantar fasciitis.1 Furthermore, these studies applied needles into “Ah-Shi points,” which is Chinese for “auwh that’s where it hurts” or “that’s it.” These are synonymous with trigger points and are used in combination with non-trigger point targets. In this sense, it is beneficial for physical therapists to recognize the findings of appropriate biomedical acupuncture research.1 Studies have demonstrated that electroacupuncture involves many different mechanisms and bioactive substances, both peripherally and centrally for pain conditions.3 Peripheral release of endogenous opioids originate from lymphocytes, monocytes/macrophages and granulocytes. Sympathetic nerve fibers are additionally activated for opioid response. These opioids activate receptors on peripheral nerve terminals to decrease pain signaling back to spinal and supraspinal structures.3 Electroacupuncture has been shown to inhibit the sensory component of pain through spinal mechanisms including opioids, serotonin, norephinephrine and glutamate.3 Spinal opioid receptors are targeted to inhibit thermal hyperalgesia and mechanical pain thresholds. Low and high frequency electroacupuncture have been found to inhibit thermal pain during acute pain. Thermal, mechanical and spontaneous pain are inhibited in persistent pain conditions. Electroacupuncture influence on opioid receptors is thought to occur on both presynaptic primary afferent fibers and postsynaptic dorsal horn neurons.3 Electroacupuncture studies have also confirmed the involvement of spinal serotonin and norephinephrine in pain inhibition.3 This includes serotonin-containing nucleus raphe magnus neurons and norepinephrine-containing locus coeruleus neurons. Electroacupuncture also decreases glutamate receptor activity and induces release of spinal norepinephrine, which each inhibit pain signals at the spinal level. Pain reduction has also been noted with changes in glial cells, cytokines, signal molecules/pathways, dopamine and acetylcholine at the spinal level.3 Electroacupuncture benefits via supraspinal mechanisms have been noted with the contribution of many nuclei.3 Sensory components are mediated via nucleus raphe magnus, periaqueductal gray, locus coeruleus, arcuate, preoptic area, nucleus submedius, habenular, accumbens, caudate, septal area and amygdala. Opioid activity in the arcuate-periaqueductal gray-nucleus raphe magnus-spinal dorsal horn pathway are thought to be particularly important in this sensory realm. Several studies have shown that endorphin release blocks affective pain responses while controlling for sensory pain inhibition. This selective supraspinal influence on affective and sensory components of pain is a similar consideration for drug efficacy in pain management, including the use of morphine.3 The physical therapists at Evolution Sports Physiotherapy have been trained in a variety of needling techniques to meet the individual needs of our patients. Our comprehensive treatment approach respects localized tissue dysfunction in addition to central considerations based on clinical findings and assessment. Please contact us with any questions concerning dry needling and treatment options. References: 1. Dunning J et al. Dry needling: a literature review with implications for clinical practice guidelines. Physical Therapy Reviews 19(4):252-265, 2014 2. Cagnie B et al. Physiologic effects of dry needling. Curr Pain Headache Rep. 17:348, 2013. 3. Zhang R et al. Mechanisms of acupuncture- electroacupuncture on persistent pain. Anesthesiology. 120:482-503, 2014.
By Hibu Websites March 4, 2020
This is probably the most common question asked by patients when dry needling is presented to them as a viable treatment option. The answer to this question is multifaceted. In this post, I will review the peripheral indications and effects of dry needling and will break down and discuss multiple attributes of the treatment. Dry needling is much more than simply inserting an acupuncture needle into a painful trigger point, tight muscular knot, or muscle spasm. Before we understand how the needle itself effects healing and pain levels, it is important to understand the body’s mechanisms that allow these conditions to form in the first place. Trigger points, or knots, can form for a variety of reasons to include acute trauma, repetitive micro-trauma, overuse, and stress. All of these conditions elicit an inflammatory healing response from the body, which creates compression of local blood vessels and decreases circulation and oxygen delivery to the area. This impaired circulation combined with the increased metabolic demands of the hypertonic muscle leads to the depletion of Adenosine Triphosphate (ATP), the cells energy source used to fuel metabolic processes. The “energy crisis” created via the decrease in available ATP creates compensations at the neuromuscular end plate, both pre- and post-synaptically . Pre-synaptically, in the nerve terminal, ATP is directly responsible for the inhibition of acetylcholine (ACh) release. Acetylcholine is a neurotransmitter used at the motor end plate to elicit a muscle’s action potential and therefore a muscle contraction. The depletion of ATP perpetuates the release of ACh, thus perpetuating a muscle contraction in an already hypertonic muscle. Post-synaptically, ATP fuels the calcium (Ca2+) pump, which is responsible for maintaining the electrochemical gradient required to signal skeletal muscle cells to contract. The calcium pump is utilized by opening to allow a stimulus signal to pass and thus allow Ca2+ to flood they cytosol, but also to immediately pump ca2+ out of the cytosol when muscle activation is no longer required. The depletion of ATP mentioned above allows these channels to remain open, therefore, the muscles continually receive the signal to contract. Both of these actions compound upon one another to create a vicious cycle of muscle hypertonicity. When the increased metabolic demands of the hypertonic muscle cell are not met, the cells begin to panic and essentially yell for help. This is achieved by releasing algogenic chemicals such as bradykinins, cytokines, serotonin, histamine, potassium, prostaglandins, leukotrienes, somatostatins, and substance P in order to activiate local nocicepors, to elicit a healing response from the body. Thus, we have the development of a trigger point and the subsequent tenderness and pain associated with it. The effects of prolonged exposure to algogenic substances have been shown to lead to demyelination of local nerves and abnormal nociceptive impulses, which perpetuate the pain cycle. One of the key components of the dry needling treatment is often the aim of eliciting a “twitch response” by inserting the needle directly into a trigger point and tapping onto a sensitive loci. Although this effect is not required for a successful dry needling treatment it is a key component in clearing the excessive build up of ACh from the synaptic cleft and returning the motor end plate to a homeostatic state. Needle manipulation also plays a key role in the effects of dry needling. Multiple techniques are used to achieve a variety of goals. The techniques of pistoning or fanning of the needle are often utilized to create microtrauma and to elicit twitch responses by tapping onto multiple sensitive loci in the desired area. Periosteal pecking is a technique often used at the teno-osseous junction to achieve small amounts of bleeding and microtrauma to a tendon that normally has very little blood supply, in order to elicit a healing response. This technique is performed by a series of rapid tapping motions through the tendon and onto a bony backdrop. Lastly, the needle manipulation technique of twisting the needle has been shown to have numerous effects on local tissues as well as pain relieving properties. Of all of the techniques discussed, only rotation of the needle has been shown to definitively change the appearance of the local connective tissue surrounding the insertion point. Marked thickening of the subcutaneous connective tissue along with deformation of the extracellular matrix have been observed in tissue samples taken after dry needling treatments with needle rotation. Deformation of the extracellular matrix is believed to signal therapeutic effects via the alignment of collagen fibers and fibroblasts. This technique has also been shown to be the only technique that elicits an endogenous opioid release creating true pain reduction from the treatment. If you have any further questions about Dry Needling or feel you could benefit from this treatment technique, please contact Morgan or call our office to speak with one of the therapists at 410-628-0820. Stay tuned for our next newsletter where we will discuss the impact of Dry Needling on the Central Nervous System. References Chu, J. "Does EMG (dry needling) reduce myofascial pain symptoms due to cervical nerve root irritation?." Electromyography and clinical neurophysiology 37.5 (1997): 259-272. Chu, Jennifer. "Twitch-obtaining intramuscular stimulation: observations in the management of radiculopathic chronic low back pain." Journal of Musculoskelatal Pain 7.4 (1999): 131-146. Langevin, Helene M., David L. Churchill, and Marilyn J. Cipolla. "Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture." The FASEB Journal 15.12 (2001): 2275-2282. http://www.acupmedvet.com/artigos%20cient%C3%ADficos/Langevin%20et%20al.,%202001b.pdf Langevin, Helene M., David L. Churchill, and Marilyn J. Cipolla. "Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture." The FASEB Journal 15.12 (2001): 2275-2282. http://jap.physiology.org/content/91/6/2471.short Langevin, Helene M., et al. "Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo." American Journal of Physiology-Cell Physiology 288.3 (2005): C747-C756. http://ajpcell.physiology.org/content/288/3/C747.short Langevin, Helene M., et al. "Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction‐based mechanism." Journal of cellular physiology 207.3 (2006): 767-774. Shah, Jay P., et al. "Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points." Archives of physical medicine and rehabilitation 89.1 (2008): 16-23. http://triggerpoint-tutorial.com/pdf/Shah_Biological_milieu_of_MTP.pdf
By Morgan S. Johnson October 23, 2019
Evolution Sports is Hosting the 2019 Olympic Lifting Camps on December 7th, 2019
More Posts
Share by: